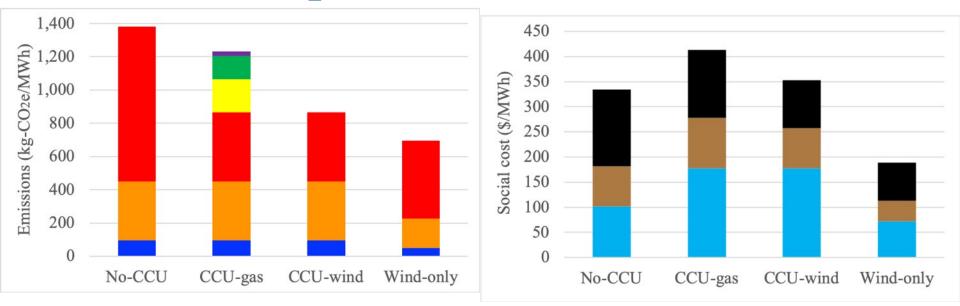
Facts and Data About Carbon Capture, Direct Air Capture, and Blue Hydrogen

Mark Z. Jacobson Stanford University

California Joint Leg. Session Sacramento, California May 31, 2022

Why Not Carbon Capture?



Coal Plant With CCU Powered by Natural Gas

Units: kg-CO ₂ e/MWh	20 yr	100 yr
a) Upstream CO ₂ and leaked CH ₄ from coal	450	237
b) CO ₂ from stack	931	931
c) CO ₂ captured from stack by equipment	516	516
Percent of stack CO ₂ captured (c/b)	55%	55%
CO ₂ e emitted by natural gas mining+combustion	367	283
e) Captured CO ₂ e not returned to air by natgas (c-d)	149	233
Percent CO ₂ e reduction realized e/(a+b)	10.8%	20%

CCU attached to coal plant reduces only 11-20% of CO₂e it is expected to over 20-100 y

Change in CO₂e and Social Cost in 3 CCU Cases

1st case coal-No-CCU; 2nd: Coal-CCU powered by natural gas;

3rd : Coal-CCU powered by wind; 4th: replace coal with wind

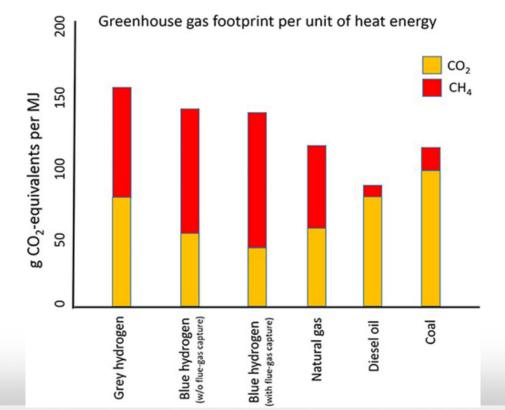
Blue=upstream coal non-CH₄ CO₂e; Orange=coal upstream CH₄ CO₂e; Red=coal CO₂; Yellow=nat gas CO₂; green=Natgas CO₂e from CH₄ leaks; Purple=other natgas upstream CO₂e; Light blue=elec+CCU cost; Brown=air pol cost; Black=climate cost

Summary of CCS/U

- Using natural gas to run coal-CCU reduces CO₂e only 11.8-20% over 20-100 years while increasing air pollution and mining 25% and incurring a CCU equipment cost
- Using wind to run coal-CCU reduces CO₂e only 34-44% while keeping air pollution and mining the same, while incurring equip cost
- Using same wind to replace coal reduces CO₂ emissions, air pollution emissions, and mining 49.7% and has no CCU equipment cost

Why Not Blue or Gray Hydrogen?

Efficient Applications of Green H₂


- Long-distance vehicles (airplanes, ships, trains, trucks, military vehicles)
- Steel production, some other industrial processes
- Electricity and heat in remote microgrids
- Not for stationary electricity storage, building heat, or passenger vehicles

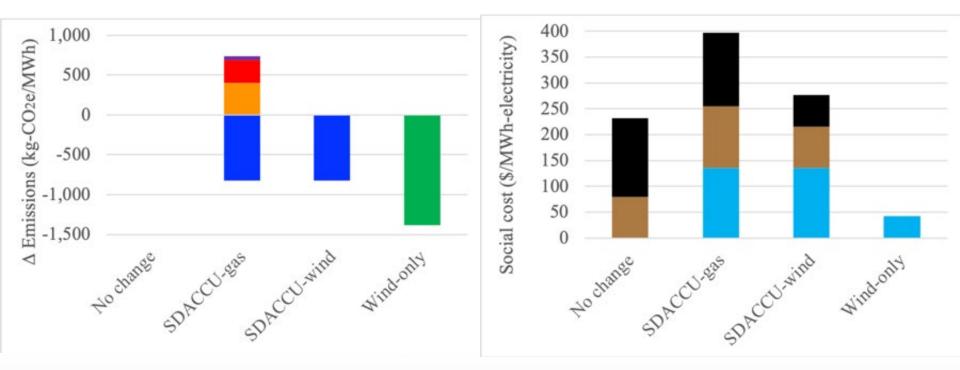
Blue vs. Gray Hydrogen: Main Assumptions

- Use of steam methane reforming, SMR (vs. autothermal reforming, ATR)
- Leakage rate 3.5 (1.54 to 4.3)%
- Carbon dioxide capture rate for pure stream from SMR: 85 (78.8-90)%; flue gas: 65%
- 20-year GWP (100-year also examined)

Howarth and Jacobson (2021)

Base Case Results

Why Not Synthetic Direct Air Carbon Capture and Storage?



Direct Air Capture Powered by Natural Gas

Units: kg-CO ₂ e/MWh	20 yr	100 yr
a) CO ₂ removed from air	825	825
b) CO ₂ e from natural gas upstream returned to air	334	165
c) CO ₂ from natural gas combustion returned to air	404	404
d) Net CO ₂ e reduced due to natural gas (a-b-c)	87	256
Percent of removed CO ₂ e that stays removed (d/a)	11%	31%

→Natural gas-powered DAC reduces a net of only 11-31% of CO2e that is captured over 20-100 years.

Change in CO₂e and Social Cost in 3 DAC Cases

1st case: no change; 2nd: Use SDACCU powered by natural gas; 3rd : Use SDACCU powered by wind; 4th: replace coal with wind

Direct Air Capture is an Opportunity Cost

Preventing CO₂ from getting into air has the exact same impact as removing it

So, the social cost of DAC powered by fossils is 8x that of using renewables to replace fossils.

The social cost of DAC powered by renewables is ~6x that of using renewables to replace fossils.

When renewable replace fossils, they not only eliminate CO2, but they also reduce

- a) non-CO₂ air pollutants from fossils
- b) upstream fuel mining and pollution
- c) pipeline, refinery, gas station, and other fossil infrastructure
- d) oil spills, oil fires, gas leaks, gas explosions
- e) international conflicts over energy

Conclusion

CCS/U, DAC, and blue H2 are all opportunity costs that increase air pollution, mining, infrastructure, carbon dioxide, and social costs relative to spending the same money on replacing fossil fuels with renewables.

Any government support for CCS/U, DAC, and blue H2 IS A FOSSIL-FUEL SUBSIDY that will keep the fossil-fuel industry in business.

Any non-subsidized cost of these technologies will be paid by ratepayers thus is a TAX ON RATEPAYERS

Book on 100% WWS

https://web.stanford.edu/group/efmh/jacobson/WWSBook/WWSBook.ht

<u>m</u>

Paper on Carbon Capture and Direct Air Capture

https://web.stanford.edu/group/efmh/jacobson/Articles/Others/19-CCS-DAC.pdf

Paper: How Green is Blue Hydrogen

https://onlinelibrary.wiley.com/doi/full/10.1002/ese3.956

Twitter: @mzjacobson